If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-84x+39=0
a = 3; b = -84; c = +39;
Δ = b2-4ac
Δ = -842-4·3·39
Δ = 6588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6588}=\sqrt{36*183}=\sqrt{36}*\sqrt{183}=6\sqrt{183}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-6\sqrt{183}}{2*3}=\frac{84-6\sqrt{183}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+6\sqrt{183}}{2*3}=\frac{84+6\sqrt{183}}{6} $
| 3=15−3k | | 1.1x+1.2x-5.4x=-10 | | N2=6n+8=0 | | 3s-3s=0 | | 1.18x-7=0.69 | | 5.2g+6=1.2g+14 | | 2x-15+x-5=180 | | 4h+2=4h+1 | | 8y-+2=24 | | w-6=3w+10 | | 7/2x+1/2x=71/2 | | X2+3y-5=0 | | 6x-3x+3x=36 | | 23=-3p+5 | | w−6=3w+10 | | Y=0.5x-8.7 | | h-10=-9h | | c2+3c-1=1 | | 25-5d=-25 | | x+(x+1)+(x+2)=8 | | h−10=-9h | | 110-10x=1-9x | | -9+2n=-7n | | -4p-3=2=p | | 8q=-8+4q | | .7+y=−1.34 | | 4a+4/8=20 | | 3x+80=5x+22 | | 12=7x-9=3x=5-4(2-x) | | 3x+70=5x+22 | | 7-(3x+2)=-4 | | -8w−9=-9w |